Discrete Mathematics I

B. Math. II

Mid-Term Examination

Instructions: All questions carry ten marks. All graphs are assumed to be simple.

- 1. Let n > 1 be an ineger. Prove that any *n*-regular graph with an cut edge must contain at least 2(n+2) vertices.
- 2. Let k > 1 be an integer. Prove that every edge in a k-regular bipartite graph is contained in a cycle.
- 3. If (X_1, Y_1) and (X_2, Y_2) are minimum cuts in a transportation network, then prove that $(X_1 \cup X_2, Y_1 \cap Y_2)$ is also a minimum cut.
- 4. State True or False
 - (a) G is Hamiltonian if and only if it has no cut edge.
 - (b) The number of degree one vertices in a tree must be even.
 - (c) A 3-regular graph on eight vertices must contain a cut edge.
 - (d) If u, v are the only two vertices of odd degree in a graph G, then G contains a u v path.
 - (e) A tree has at most one perfect matching.